Espaces Probabilisés

Prof. Mohamed El Merouani

Université Abdelmalek Essaâdi Faculté des Sciences de Tétouan Département de Mathématiques

2019/2020

Introduction:

Expérience aléatoire :

- Les phénomènes liés au hasard ce sont des phénomènes si reproduits plusieurs fois, se déroulent différemment d'une expérience à l'autre et donnant un résultat imprévisible.
- On dit d'une expérience qu'elle est aléatoire si son résultat ne peut être prévu à priori.

Espace fondamental:

- L'ensemble de tous les résultats possibles, pour une expérience aléatoire donnée, est dit espace fondamental.
- Il est noté Ω .
- Un élément ω de Ω est dit "résultat élémentaire".

Introduction:

Événements:

- On peut identifier un événement aléatoire A avec la partie de Ω dont tous les éléments réalisent A.
- L'ensemble de tous les événements est l'ensemble de tous les sous-ensembles de $\Omega: \mathcal{P}(\Omega)$.
- Card $\mathcal{P}(\Omega) = 2^{\operatorname{Card}\Omega}$

Tribu ou σ -algèbre :

Soit Ω un espace fondamental.

Une famille \mathcal{A} de parties de Ω est une tribu (ou σ -algèbre), si :

- $\forall A \in \mathcal{A}, A^c \in \mathcal{A}.$
- **③** $\forall (A_n)_{n \in \mathbb{N}}$ suite d'événements de \mathcal{A} , $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$.

Le couple (Ω, \mathcal{A}) s'appelle un espace probabilisable.

Tribu ou σ -algèbre :

Conséquences:

- $\emptyset \in \mathcal{A}.$
- $\forall (A_n)_{n\in\mathbb{N}}$ suite d'événements de \mathcal{A} , $\bigcap_{n\in\mathbb{N}} A_n \in \mathcal{A}$.

- $\Omega \in \mathcal{A}$, et comme \mathcal{A} est stable par complémentaire, alors $\Omega^c = \emptyset \in \mathcal{A}$.
- ② $(A_n)_{n\in\mathbb{N}} \in \mathcal{A} \text{ donc } \forall n \in \mathbb{N}, A_n \in \mathcal{A},$ d'où $\bigcup_{n\in\mathbb{N}} A_n^c = (\bigcap_{n\in\mathbb{N}} A_n)^c \in \mathcal{A},$ par suite $\bigcap_{n\in\mathbb{N}} A_n \in \mathcal{A}.$

Définition:

- Soit (Ω, \mathcal{A}) un espace probabilisable.
- On appelle probabilité (ou mesure de probabilité) toute mesure P sur \mathcal{A} telle que $P(\Omega) = 1$.
- On dit que le triplet (Ω, \mathcal{A}, P) est un espace probabilisé.
- Une mesure sur A:

C'est une fonction d'ensemble positive, non identiquement égale à $+\infty$, σ -additive sur \mathcal{A} :

Pour toute suite $(A_n)_{n\geq 1}$ d'éléments de \mathcal{A} deux à deux disjoints, dont la réunion $\bigcup_{i=1}^n A_i \in \mathcal{A}$, on a :

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i).$$

Remarque:

- Si P est une probabilité, observons que P est à valeurs dans [0,1] puisque pour tout événement $A, P(A) \leq P(\Omega) = 1$.
- De plus, $P(\emptyset) = 0$

Propriétés:

Soit (Ω, \mathcal{A}, P) un espace probabilisé.

Soient A, B et $A_n, \forall n \in \mathbb{N}$ des événements de A, alors :

- $P(A^c) = 1 P(A)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Si $(A_n)_n$ est une suite croissante, ou décroissante, d'événements alors $P(\lim_{n\to\infty} A_n) = \lim_{n\to\infty} P(A_n)$

Propriétés:

- $P(\bigcup_{n \in \mathbb{N}} A_n) \le \sum_{n \in \mathbb{N}} P(A_n)$
- 6 Pour tout $n \in \mathbb{N}$, on a :

$$\sum_{i=1}^{n} P(A_i) - \sum_{i< j}^{n} P(A_i \cap A_j) \le P(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} P(A_i)$$

(Inégalité de Bonferroni)

Preuve:

$$A \subset B \Rightarrow B = A \cup (B \cap A^c) \Rightarrow P(B) = P(A) + P(B \cap A^c) \Rightarrow P(B) \ge P(A)$$

- ◆□▶ ◆御▶ ◆注▶ ◆注▶ 注 めQ@

Propriétés:

- ② $P(A \cup A^c) = P(\Omega) = 1 = P(A) + P(A^c)$ ⇒ $P(A^c) = 1 - P(A)$
- ③ $A \cup B = A \cup (A^c \cap B) \Rightarrow P(A \cup B) = P(A) + P(A^c \cap B)$ mais, $B = (A \cap B) \cup (A^c \cap B)$ donc $P(B) = P(A \cap B) + P(A^c \cap B)$ d'où $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
- \bullet Soit $(A_n)_{n\geq 1}$ une suite croissante d'événements, donc $A_n\subset A_{n+1}, \forall n\geq 1$

alors
$$\lim_{n \to +\infty} A_n = \bigcup_{n=1}^{\infty} A_n$$

On a:
$$\bigcup_{n=1}^{\infty} A_n = A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n \cup A_{n+1} \cup \dots$$

= $A_1 \cup (A_2 - A_1) \cup (A_3 - A_2) \cup \dots \cup (A_{n+1} - A_n) \cup \dots$

Propriétés:

Preuve:

 $\operatorname{alors}_{\infty}$:

$$P(\bigcup_{n=1} A_n) = P(A_1) + P(A_2 - A_1) + P(A_3 - A_2) + \dots + P(A_{n+1} - A_n) + \dots$$

(car les événements $A_1, A_2 - A_1, A_3 - A_2, \cdots$ sont deux à deux incompatibles)

et
$$P(\bigcup_{n=1}^{\infty} A_n) = P(\lim_{n \to +\infty} A_n) =$$

$$= \lim_{n \to +\infty} [P(A_1) + P(A_2 - A_1) + P(A_3 - A_2) + \dots + P(A_{n+1} - A_n)]$$

$$= \lim_{n \to +\infty} P(A_n) \text{ (car } A_n = A_1 \cup (A_2 - A_1) \cup \dots \cup (A_n - A_{n-1}))$$

Propriétés:

Preuve:

• Soit $(A_n)_{n\geq 1}$ une suite décroissante d'événements, donc

$$A_{n+1} \subset A_n, \forall n \ge 1, \text{ alors } \lim_{n \to +\infty} A_n = \bigcap_{n=1}^{+\infty} A_n.$$

Les événements $(\Omega - A_1)$; $(A_1 - A_2)$; $(A_2 - A_3)$; \cdots sont deux à deux incompatibles et leur réunion vaut $\bigcap_{n=1}^{+\infty} A_n$. d'où

$$P(\overline{\bigcap_{n=1}^{+\infty} A_n}) = P(\Omega - A_1) + P(A_1 - A_2) + P(A_2 - A_3) + \cdots$$

On peut écrire : $P(\bigcap_{n=1}^{+\infty} A_n) =$

$$\lim_{n \to +\infty} [P(\Omega - A_1) + P(A_1 - A_2) + P(A_2 - A_3) + \cdots + P(A_{n-1} - A_n)]$$

Comme
$$(\Omega - A_1) \cup (A_1 - A_2) \cup (A_2 - A_3) \cup \cdots \cup (A_{n-1} - A_n) = \overline{A_n}$$

On en déduit
$$P(\bigcap_{n=1}^{+\infty} A_n) = \lim_{n \to +\infty} P(\overline{A_n})$$

et comme
$$P(\overline{A_n}) = 1 - P(A_n)$$
 et $P(\bigcap_{n=1}^{+\infty} \overline{A_n}) = 1 - P(\bigcap_{n=1}^{+\infty} A_n)$, alors $P(\lim_{n \to +\infty} A_n) = \lim_{n \to +\infty} P(A_n)$

Propriétés :

Preuve:

Autre méthode:

 $(A_n)_n$ suite décroissante $\Leftrightarrow (A_n^c)_n$ suite croissante donc $\lim_{n \to +\infty} P(A_n^c) = P(\lim_{n \to +\infty} A_n^c)$

$$\Rightarrow \lim_{n \to +\infty} (1 - P(A_n)) = P(\bigcup_{n=1}^{+\infty} A_n^c) = P(\bigcap_{n=1}^{+\infty} A_n)$$
$$= 1 - P(\bigcap_{n=1}^{+\infty} A_n)$$

$$\Rightarrow 1 - \lim_{n \to +\infty} P(A_n) = 1 - P(\lim_{n \to +\infty} A_n)$$
$$\Rightarrow \lim_{n \to +\infty} P(A_n) = P(\lim_{n \to +\infty} A_n)$$

Propriétés:

○ Comme
$$A \cup B = A \cup (B - A)$$

alors $P(A \cup B) = P(A) + P(B - A)$
Comme $(B - A) \subset B$, alors d'après (1) $P(B - A) \leq P(B)$
par suite $P(A \cup B) \leq P(A) + P(B)$
et plus généralement $P(\bigcup_{k=1}^{n} A_k) \leq \sum_{k=1}^{n} P(A_k)$
Soit $A = \bigcup_{n=1}^{+\infty} A_n = \lim_{n \to +\infty} \bigcup_{k=1}^{n} A_k$
d'après (4) $P(A) = \lim_{n \to +\infty} P(\bigcup_{k=1}^{n} A_k) \leq \lim_{n \to +\infty} \sum_{k=1}^{n} P(A_k)$

$$\leq \sum_{k=1}^{\infty} P(A_k) = \sum_{n} P(A_n)$$

Propriétés:

Preuve:

O Inégalité de Bonferroni :

$$\sum_{i=1}^{n} P(A_i) - \sum_{i< j}^{n} P(A_i \cap A_j) \le P(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} P(A_i)$$

Dém. par récurrence;
$$\underline{n=2},\ P(A)+P(B)-P(AB) \leq P(A\cup B) \leq P(A)+P(B)$$
 (déjà vue)
$$\underline{n=3},\ P(\bigcup_{i=1}^{3}A_{i}) = \sum_{i=1}^{3}P(A_{i}) - \sum_{i< j}^{3}P(A_{i}A_{j}) + P(A_{1}A_{2}A_{3})$$
 donc
$$P(\bigcup_{i=1}^{3}A_{i}) \geq \sum_{i=1}^{3}P(A_{i}) - \sum_{i< j}^{3}P(A_{i}A_{j})$$
 (car $P(A_{1}A_{2}A_{3}) > 0$).

Propriétés:

Preuve:

Supposons qu'elle est vraie pour n-1,

$$P(\bigcup_{i=1}^{n} A_i) = P(\bigcup_{i=1}^{n-1} A_i \cup A_n)$$

$$= P(\bigcup_{i=1}^{n-1} A_i) + P(A_n) - P(\bigcup_{i=1}^{n-1} (A_i \cap A_n))$$

Donc

$$P(\bigcup_{i=1}^{n} A_i) \ge \sum_{i=1}^{n-1} P(A_i) - \sum_{i < j}^{n-1} P(A_i A_j) + P(A_n) - P(\bigcup_{i=1}^{n-1} (A_i \cap A_n))$$

$$\Rightarrow P(\bigcup_{i=1}^{n} A_i) \ge \sum_{i=1}^{n} P(A_i) - \sum_{i < j}^{n-1} P(A_i A_j) - \sum_{i=1}^{n-1} P(A_i \cap A_n)$$

$$\Rightarrow P(\bigcup_{i=1}^{n} A_i) \ge \sum_{i=1}^{n} P(A_i) - \sum_{i < j}^{n} P(A_i \cap A_j)$$

C.Q.F.D.

Inégalité de Boole:

$$P(A \cap B) \ge 1 - P(A^c) - P(B^c)$$

Pour tout A et B événements.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \le 1$$

$$\Leftrightarrow P(A) + P(B) \le 1 + P(A \cap B)$$

$$\Leftrightarrow 1 - P(A^c) + 1 - P(B^c) \le 1 - P(A \cap B)$$

$$\Leftrightarrow 1 - P(A^c) - P(B^c) \le P(A \cap B) \blacksquare$$

Définition:

Définition:

Soit (Ω, \mathcal{A}, P) un espace probabilisé et soit $B \in \mathcal{A}$ avec P(B) > 0. On définie la probabilité conditionnelle par :

$$P(A/B) = P_B(A) = \frac{P(A \cap B)}{P(B)}$$

L'espace $(\Omega, \mathcal{A}, P_B)$ est bien un espace probabilisé; $P_B(.) = P(./B)$ est bien une probabilité.

$$0 \le P_B(A) \le 1; \qquad \forall A \in \mathcal{A}$$

$$P_B(\Omega) = \frac{P(B \cap \Omega)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

$$P_B(\cup_{i=1}^{\infty} A_i) = \frac{P(B \cap (\cup_{i=1}^{\infty} A_i))}{P(B)} = \frac{\sum_{i=1}^{\infty} P(B \cap A_i)}{P(B)} = \sum_{i=1}^{\infty} P_B(A_i)$$

Remarque:

Soit $A_1, A_2 \in \mathcal{A}$ avec $P(A_1) > 0$ et $P(A_2) > 0$. Alors : $P(A_1 \cap A_2) = P(A_1/A_2)P(A_2) = P(A_2/A_1)P(A_1)$

<u>Théorème</u>:

Soit (Ω, \mathcal{A}, P) un espace probabilisé.

Soit $A_1, A_2, \dots, A_n \in \mathcal{A}$ avec $P(\bigcap_{i=1}^{n-1} A_i) > 0$ alors :

$$P(\bigcap_{i=1}^{n} A_i) = P(A_1)P(A_2/A_1)P(A_3/A_1A_2)\cdots P(A_n/\bigcap_{i=1}^{n-1} A_i)$$

Preuve:

• On a: $A_1 \supset A_1 A_2 \supset \cdots \supset \bigcap_{i=1}^{n-2} A_i \supset \bigcap_{i=1}^{n-1} A_i$ et comme $P(\bigcap_{i=1}^{n-1} A_i > 0$ alors $P(A_1) > 0$; $P(A_1 A_2) > 0$; \cdots ; $P(\bigcap_{i=1}^{n-2} A_i) > 0$ Donc $P(A_k / \bigcap_{i=1}^{k-1} A_i)$ sont bien définies $(k = 2, \cdots, n)$.

Preuve:

• (Par récurrence)

Pour $\underline{n=2}$ (c'est la définition)

Supposons la formule est vraie pour n-1 événements et démontrons qu'elle est vraie pour n.

$$P(\bigcap_{i=1}^{n} A_i) = P\left(\left(\bigcap_{i=1}^{n-1} A_i\right) \cap A_n\right)$$

$$= P(\bigcap_{i=1}^{n-1} A_i) P\left(A_n / \bigcap_{i=1}^{n-1} A_i\right)$$

$$= P(A_1 P(A_2 / A_1) \cdots P\left(A_{n-1} / \bigcap_{i=1}^{n-2} A_i\right) P\left(A_n / \bigcap_{i=1}^{n-1} A_i\right)$$

Théorème des probabilités totales :

Soit (Ω, \mathcal{A}, P) un espace probabilisé.

Soit $(B_n)_{n\in\mathbb{N}}$ un système complet d'événements (une partition de Ω : i.e. $\bigcup_n B_n = \Omega$ et $B_i \cap B_j = \emptyset, \forall i \neq j$) tels que $P(B_n) > 0; \forall n \in \mathbb{N}$.

Pour tout $A \in \mathcal{A}$, on a : $P(A) = \sum_{n} P(B_n) . P(A/B_n)$

Comme
$$A = A \cap \Omega = A \cap (\bigcup_n B_n) = \bigcup_n (A \cap B_n)$$

avec $(A \cap B_i) \cap (A \cap B_j) = \emptyset$, pour $i \neq j$

On a :
$$P(A) = P(\bigcup_n (A \cap B_n) = \sum_n P(A \cap B_n)$$

$$= \sum_{n} P(B_n).P(A/B_n)$$

Théorème de Bayes :

Soit (Ω, \mathcal{A}, P) un espace probabilisé.

Soit $(B_n)_n$ une suite d'évènements disjoints de \mathcal{A} tels que $P(B_n) > 0$; $n = 1, 2, \ldots$ et $\bigcup_{n=1}^{\infty} B_n = \Omega$. Soit $A \in \mathcal{A}$ avec P(A) > 0, alors :

$$P(B_j/A) = \frac{P(B_j)P(A/B_j)}{\sum_{i=1}^{\infty} P(B_i).P(A/B_i)}; \qquad j = 1, 2, \dots$$

Preuve:

On a: $\forall j, P(B_j/A) = \frac{P(B_j \cap A)}{P(A)} = \frac{P(B_j)P(A/B_j)}{P(A)}$

D'après la formule des probabilités totales, on a :

$$P(A) = \sum_{i=1}^{+\infty} P(B_i) P(A/B_i)$$

et alors, on obtient le résultat énoncé.

Indépendance deux à deux :

Définition:

Soit (Ω, \mathcal{A}, P) un espace probabilisé.

Deux événements A et B sont dits indépendants si :

$$P(A \cap B) = P(A)P(B)$$

Conséquence :

Si P(A)>0 et P(B)>0, les évènements A et B sont indépendants si, et seulement si, P(A/B)=P(A) ou P(B/A)=P(B).

La réalisation de l'un des événements A ou B n'a aucune influence sur la réalisation de l'autre.

Remarque:

Soit B un événement que lconque et A un énénement tel que P(A)=0.

Comme $A \cap B \subset A$, alors $P(A \cap B) = 0$ et P(A).P(B) = 0. Donc, les événements A et B sont indépendants.

Indépendance deux à deux :

Remarque:

Deux événements incompatibles A et B (avec $P(A) \neq 0$ et $P(B) \neq 0$) ne sont pas indépendants.

En effet; P(A)P(B) > 0 alors que $P(A \cap B) = 0$.

Proposition:

Si A et B sont deux événements indépendants, alors :

- \bullet A et \overline{B} indépendants.
- \overline{A} et \overline{B} indépendants.

Indépendance deux à deux :

- On a : $P(A \cap \overline{B}) = P(A AB) = P(A) P(AB)$ (car en général $P(E - F) = P(E) - P(E \cap F)$ et si $F \subset E$ alors P(E - F) = P(E) - P(F)) = P(A) - P(A)P(B) (car A et B sont indépendants) = P(A)[1 - P(B)]= $P(A)P(\overline{B})$
- $oldsymbol{0}$ (Analogue ou par changement de rôles de A et de B!)
- $\begin{array}{l} \textbf{0} \quad \text{On a}: P(\overline{A} \cap \overline{B}) = P(\overline{A \cup B}) = 1 P(A \cup B) \\ = 1 P(A) P(B) + P(A \cap B) = 1 P(A) P(B) + P(A).P(B) \\ \text{(car A et B sont indépendants)} \\ = P(\overline{A}) P(B)[1 P(A)] = P(\overline{A}) P(B)P(\overline{A}) \\ = P(\overline{A})[1 P(B)] = P(\overline{A}).P(\overline{B}) \\ \end{array}$

Indépendance dans l'ensemble :

Définition:

Soit (Ω, \mathcal{A}, P) un espace probabilisé.

Les évènements A_1,A_2,\cdots,A_n sont dits indépendants (ou indépendants dans leur ensemble) si pour toute partie $\{i_1,\cdots,i_k\}\subset\{1,\cdots,n\}$ on a : $P(A_{i_1}A_{i_2}\cdots A_{i_k})=P(A_{i_1})P(A_{i_2})\cdots P(A_{i_k});\ k=2,3,\ldots,n$

Dans le cas de trois évènements A, B et C, on a : A, B, C sont indépendantes (dans leur ensemble) si, et seulement si,

$$P(AB) = P(A)P(B)$$

$$P(AC) = P(A)P(C)$$

$$P(BC) = P(B)P(C)$$

$$P(ABC) = P(A)P(B)P(C)$$

Remarque:

L'indépendance dans l'ensemble implique l'indépendance deux à deux. Mais, la réciproque n'est pas vraie.