Lois usuelles (2)

Prof. Mohamed El Merouani

2019/2020

Plan de cette partie:

- Calcul des moments de quelques lois
- Loi d'une somme de v.a.
- Propriétés de quelques lois liées à la normale
- Changements de variables et leurs applications
- Approximations d'une loi de probabilité par une autre

Calcul des moments de la loi binomiale :

Espérance mathématique :

Soit une v.a. discrète X qui suit la loi binomiale $\mathcal{B}(n,p)$. On sait que E(X)=np.

En effet;
$$E(X) = \sum_{k=0}^{n} k C_n^k p^k (1-p)^{n-k} = \sum_{k=1}^{n} k C_n^k p^k (1-p)^{n-k}$$
. Comme

 $\forall k=1,2,\cdots,n,$ on a $kC_n^k=nC_{n-1}^{k-1},$ l'espérance E(X) s'écrit sous la

forme:
$$E(X) = \sum_{k=1}^{n} nC_{n-1}^{k-1} p^k (1-p)^{n-k} = np \sum_{k=1}^{n} C_{n-1}^{k-1} p^{k-1} (1-p)^{n-k} =$$

$$= np (p + (1 - p))^{n-1} = np$$

On aurait retrouvé ce résultat en remarquant que X est la somme de n variables $X_i, i = 1, 2, \dots, n$, de Bernoulli indépendantes de même paramètre $p: X = X_1 + X_2 + \dots + X_n$. On a alors:

$$E(X) = E(X_1) + E(X_2) + \dots + E(X_n) = np$$

Calcul des moments de la loi binomiale :

Variance:

Soit une v.a. discrète X qui suit la loi binomiale $\mathcal{B}(n,p)$. On sait que Var(X) = np(1-p).

En effet; Comme X est la somme de n variables X_i , $i = 1, 2, \dots, n$, de Bernoulli indépendantes de même paramètre p, on a :

$$Var(X) = Var(X_1 + X_2 + \dots + X_n)$$
 = $Var(X_1) + Var(X_2) + \dots + Var(X_n) = np(1-p)$. Ce résultat peut être retrouvé par un calcul : $Var(X) = E(X^2) - (E(X))^2$. On a :
$$E(X^2) = \sum_{k=0}^n k^2 C_n^k p^k (1-p)^{n-k} = \sum_{k=0}^n [k(k-1) + k] C_n^k p^k (1-p)^{n-k} = \sum_{k=2}^n k(k-1) C_n^k p^k (1-p)^{n-k} + \sum_{k=1}^n k C_n^k p^k (1-p)^{n-k}$$
 En remarquant que $k(k-1)C_n^k = n(k-1)C_{n-1}^{k-1} = n(n-1)C_{n-2}^{k-2}$, on a

$$E(X^2) = n(n-1)p^2 \sum_{k=2}^{n} C_{n-2}^{k-2} p^{k-2} (1-p)^{n-k} + np \sum_{k=1}^{n} k C_{n-1}^{k-1} p^{k-1} (1-p)^{n-k}$$

 $= n(n-1)p^{2} (p + (1-p))^{n-2} + np (p + (1-p))^{n-1} = n(n-1)p^{2} + np$ On a donc $Var(X) = n(n-1)p^{2} + np - n^{2}p^{2} = np(1-p)$.

Calcul des moments de la loi de Poisson:

Soit X una v.a. $(X \sim \mathcal{P}(\lambda))$ qui suit une loi de Poisson de paramètre $\lambda > 0$. On sait que $E(X) = \lambda$.

En effet,
$$E(X) = \sum_{k=0}^{\infty} k e^{-\lambda} \frac{\lambda^k}{k!} = \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} e^{\lambda} = \lambda$$

Et on sait aussi que $Var(X) = \lambda$.

En effet,
$$E(X^2) = \sum_{k=0}^{\infty} k^2 e^{-\lambda} \frac{\lambda^k}{k!} = \sum_{k=1}^{\infty} k e^{-\lambda} \frac{\lambda^k}{(k-1)!}$$

$$= \sum_{k=1}^{\infty} [(k-1)+1] e^{-\lambda} \frac{\lambda^k}{(k-1)!}$$

$$= \lambda^2 e^{-\lambda} \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} + \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}$$

$$= \lambda^2 e^{-\lambda} e^{\lambda} + \lambda e^{-\lambda} e^{\lambda} = \lambda^2 + \lambda$$

et donc $Var(X) = E(X^2) - (E(X))^2 = \lambda$

Calcul des moments de la loi géométrique :

Espérance mathématique:

Soit une v.a. X qui suit une loi géométrique de paramètre p. On sait que son espérance mathématique est : $E(X) = \frac{1}{p}$.

En effet,
$$E(X) = \sum_{k=0}^{\infty} kp(1-p)^{k-1} = p \sum_{k=1}^{\infty} k(1-p)^{k-1}$$
.
Comme $\sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}$ pour $|x| < 1$, on a $E(X) = p \frac{1}{(1-(1-p))^2}$.

Variance:

Sa variance est:
$$Var(X) = \frac{1-p}{p^2}$$
.
En effet, $E(X^2) = \sum_{k=0}^{\infty} k^2 p (1-p)^{k-1}$
 $= \sum_{k=0}^{\infty} k(k-1)p(1-p)^{k-1} + \sum_{k=0}^{\infty} kp(1-p)^{k-1}$
 $= p(1-p)\sum_{k=2}^{\infty} k(k-1)p(1-p)^{k-2} + \frac{1}{p}$
Comme $\sum_{n=1}^{\infty} n(n-1)x^{n-2} = \frac{1}{(1-x)^3}$ pour $|x| < 1$, on a $E(X^2) = p(1-p)\frac{2}{(1-(1-p))^3} + \frac{1}{p} = \frac{2(1-p)}{p^2} + \frac{1}{p}$ et donc $Var(X) = \frac{2(1-p)}{p^2} + \frac{1}{p} - \frac{1}{n^2} = \frac{1-p}{p^2}$

Calcul des moments de la loi uniforme :

Soit une v.a. continue X suit une loi uniforme sur un intervalle [a,b] Son espérance mathématique est : $E(X) = \frac{a+b}{2}$

En effet,
$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{a}^{b} \frac{x}{b-a} dx = \frac{1}{b-a} \left[\frac{x^2}{2} \right]_{a}^{b}$$

= $\frac{1}{b-a} \left(\frac{b^2 - a^2}{2} \right) = \frac{a+b}{2}$

Sa variance est :
$$Var(X) = \frac{(a-b)^2}{12}$$
. En effet,

$$E(X^2) = \int_{-\infty}^{+\infty} x^2 f(x) dx = \int_a^b \frac{x^2}{b-a} dx = \frac{1}{b-a} \left[\frac{x^3}{3} \right]_a^b$$

$$= \frac{1}{b-a} \left(\frac{b^3 - a^3}{3} \right) = \frac{b^2 + ab + a^2}{3}$$

$$Var(X) = E(X^2) - E(X)^2 = \frac{b^2 + ab + a^2}{3} - \left(\frac{a+b}{2} \right)^2 = \frac{(a-b)^2}{12}$$

←□→←□→←□→←□→ ■ **少**9(

Calcul des moments de la loi exponentielle :

Soit une v.a. continue X suit une loi exponentielle de paramètre $\lambda>0$ Son espérance mathématique est : $E(X)=\frac{1}{\lambda}.$

En effet,
$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \lambda \int_{0}^{+\infty} x e^{-\lambda x} dx$$

= $[-xe^{-\lambda x}]_{0}^{+\infty} + \int_{0}^{+\infty} e^{-\lambda x} dx = \frac{1}{\lambda}$

Sa variance est :
$$Var(X) = \frac{1}{\lambda^2}$$
.
En effet, $E(X^2) = \int_{-\infty}^{+\infty} x^2 f(x) dx = \lambda \int_{0}^{+\infty} x^2 e^{-\lambda x} dx$

$$= [-x^2 e^{-\lambda x}]_{0}^{+\infty} + 2 \int_{0}^{+\infty} x e^{-\lambda x} dx = 2([\frac{-x}{\lambda} e^{-\lambda x}]_{0}^{+\infty} + \frac{1}{\lambda} \int_{0}^{+\infty} e^{-\lambda x} dx)$$

$$= 2(0 + \frac{1}{\lambda} [\frac{-1}{\lambda} e^{-\lambda x}]_{0}^{+\infty}) = \frac{2}{\lambda^2}$$
Donc $Var(X) = \frac{2}{\lambda^2} - (\frac{1}{\lambda})^2 = \frac{1}{\lambda^2}$

Calcul des moments de la loi de Pareto:

Espérance mathématique:

Soit une v.a. X suit une loi de Pareto de paramètre α

Son espérance mathématique est :
$$E(X) = \frac{\alpha}{\alpha - 1} C_0$$
; $(\alpha > 1)$
En effet, $E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \frac{\alpha}{c_0} \int_{c_0}^{+\infty} x \left(\frac{c_0}{x}\right)^{\alpha + 1} dx$

$$= \frac{\alpha}{c_0} c_0^{\alpha+1} \int_{-\infty}^{+\infty} x^{-\alpha} dx = \alpha c_0^{\alpha} \left[\frac{x^{-\alpha+1}}{1-\alpha} \right]^{+\infty}$$

$$\sin 1 - \alpha \ge 0$$
:

alors $x^{1-\alpha} \longrightarrow +\infty$ lorsque $x \longrightarrow +\infty$ et par suite E(X) n'existe pas.

$$\underline{\text{si } 1 - \alpha < 0}$$
:

 $alors x^{1-\alpha} \longrightarrow 0 lorsque x \longrightarrow +\infty$

et
$$E(X) = \alpha c_0^{\alpha} \left(0 - \frac{c_0^{-\alpha+1}}{1-\alpha} \right)$$

donc
$$E(X) = \frac{\alpha c_0^{\alpha} c_0^{1-\alpha}}{\alpha-1} = \frac{\alpha c_0}{\alpha-1}$$
 avec $\alpha > 1$

Calcul des moments de la loi de Pareto:

Variance:

Sa variance est :
$$Var(X) = \frac{\alpha C_0^2}{(\alpha - 1)^2(\alpha - 2)}$$
 (existe pour $\alpha > 2$)

En effet, $E(X^2) = \int_{-\infty}^{+\infty} x^2 f(x) dx = \frac{\alpha}{c_0} \int_{c_0}^{+\infty} x^2 \left(\frac{c_0}{x}\right)^{\alpha + 1} dx$

$$= \frac{\alpha}{c_0} c_0^{\alpha + 1} \int_{c_0}^{+\infty} \frac{x^2}{x^{\alpha + 1}} dx = \alpha c_0^{\alpha} \int_{c_0}^{+\infty} x^{1 - \alpha} dx = \alpha c_0^{\alpha} \left[\frac{x^{2 - \alpha}}{2 - \alpha}\right]_{c_0}^{+\infty}$$

$$\frac{\sin 2 - \alpha \ge 0}{\text{alors } x^{2 - \alpha}} \to +\infty \text{ lorsque } x \to +\infty \text{ et par suite } E(X^2) \text{ n'existe pas.}$$

$$\frac{\sin 2 - \alpha < 0}{\alpha - 2} :$$

$$\cos x^{2 - \alpha} \to 0 \text{ lorsque } x \to +\infty \text{ et } E(X^2) = \alpha c_0^{\alpha} \left[0 - \frac{c_0^{2 - \alpha}}{2 - \alpha}\right] = \frac{\alpha c_0^2}{\alpha - 2}$$

$$\operatorname{Donc} Var(X) = \frac{\alpha c_0^2}{\alpha - 2} - \left(\frac{\alpha c_0}{\alpha - 1}\right)^2 = \frac{\alpha C_0^2}{(\alpha - 1)^2(\alpha - 2)} \text{ (existe pour } \alpha > 2$$

Calcul des moments de la loi normale :

Soit une v.a. $X \sim \mathcal{N}(0,1)$. Son espérance mathématique est E(X) = 0 et sa variance est Var(X) = 1.

En effet, $E(X)=\int_{-\infty}^{+\infty}\frac{1}{\sqrt{2\pi}}xe^{-\frac{x^2}{2}}dx=0$ (car $x\mapsto xe^{-\frac{x^2}{2}}$ est une fonction impaire).

$$\text{Comme } E(X^2) = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} x^2 e^{-\frac{x^2}{2}} dx = 2 \int_0^{+\infty} \frac{1}{\sqrt{2\pi}} x^2 e^{-\frac{x^2}{2}} dx$$

$$= \frac{2}{\sqrt{2\pi}} \left(\left[x^2 e^{-\frac{x^2}{2}} \right]_0^{\infty} + \int_0^{+\infty} e^{-\frac{x^2}{2}} dx \right) = \frac{2}{\sqrt{2\pi}} \left(0 + \frac{\sqrt{2\pi}}{2} \right) = 1$$
 et $E(X) = 0$, on en déduit $Var(X) = E(X^2) - E(X)^2 = 1$.

Si
$$Y \sim \mathcal{N}(m, \sigma)$$
, alors $E(Y) = m$.

En effet, on a $Z = \frac{Y-m}{\sigma} \sim \mathcal{N}(0,1)$.

D'où E(Z) = 0, par suite $\frac{1}{\sigma}E(Y) - \frac{m}{\sigma} = 0$ et E(Y) = m.

De même, $Var(Z) = \frac{1}{\sigma^2} Var(Y) = 1$ et donc $Var(Y) = \sigma^2$.

Loi d'une somme de v.a. discrètes :

• La probabilité P(Z = k) de la somme Z = X + Y de deux v.a. discrètes X et Y est la somme des probabilités P(X = i, Y = j) étendue à tous les couples (i, j) liés par la relation k = i + j.

$$P(Z=k) = \sum_{i+j=k} P(X=i, Y=j)$$

 \bullet Si les v.a. X et Y sont indépendantes, on a :

$$P(Z=k) = \sum_{i+j=k} P(X=i)P(Y=j)$$

Somme de deux v.a. binomiales:

Soient deux v.a. X et Y indépendantes, $X \sim \mathcal{B}(n, p)$ et $Y \sim \mathcal{B}(m, p)$, alors $X + Y \sim \mathcal{B}(n + m, p)$.

On a :
$$P(X+Y=k) = \sum_A P(X=i,Y=j)$$
 où
$$A = \{(i,j)/0 \le i \le n, 0 \le j \le m, i+j=k\} \ P(X+Y=k) = \sum_A P(X=i)P(Y=j) = \sum_A C_n^i p^i (1-p)^{n-i} C_m^j p^j (1-p)^{m-j} = \sum_A C_n^i C_m^j p^{i+j} (1-p)^{n+m-i-j} \text{ or } \sum_A C_n^i C_m^j = \sum_{k=0}^{n+m} C_n^i C_m^j = C_{n+m}^k d$$
'où $P(X+Y=k) = C_{n+m}^k p^k (1-p)^{n+m-k}$

On peut énoncer ce résultat plus simplement en affirmant que X + Y est la somme de n + m variables de Bernoulli de même paramètre p. C'est donc une variable binomiale $\mathcal{B}(n+m,p)$.

Somme de deux v.a. de Poisson:

Soient deux v.a. X et Y indépendantes suivant des lois de Poisson, $X \sim \mathcal{P}(\lambda_1)$ et $Y \sim \mathcal{P}(\lambda_2)$, alors leur somme Z = X + Y suit une loi de Poisson $Z \sim \mathcal{P}(\lambda_1 + \lambda_2)$.

En effet:

$$P(Z = k) = P(X + Y = k) = \sum_{i=0}^{k} P(X = i, Y = k - i)$$

$$= \sum_{i=0}^{k} P(X = i) \cdot P(Y = k - i) = \sum_{i=0}^{k} e^{-\lambda_1} \frac{\lambda_1^{i}}{i!} e^{-\lambda_2} \frac{\lambda_2^{k-i}}{(k-i)!}$$

$$= e^{-(\lambda_1 + \lambda_2)} \sum_{i=0}^{k} \frac{\lambda_1^{i} \lambda_2^{k-i}}{i!(k-i)!} = e^{-(\lambda_1 + \lambda_2)} \sum_{i=0}^{k} C_k^{i} \frac{\lambda_1^{i} \lambda_2^{k-i}}{k!}$$

$$= \frac{e^{-(\lambda_1 + \lambda_2)}}{k!} (\lambda_1 + \lambda_2)^k$$

Loi d'une somme de v.a. continues :

Soient X et Y deux v.a. continues. Soit Z = X + Y. On veut détermininer la fonction de répartition de la v.a. Z. On a :

$$\begin{split} F_Z(z) &= P(Z \leq z) = P(X+Y \leq z) = \iint_A f(x,y) dx dy \\ \text{où } A &= \{(x,y) \in \mathbb{R}^2/x + y \leq z\}. \end{split}$$

Si X et Y sont indépendantes, on a :

$$F_Z(z) = \iint_A f(x, y) dx dy$$

$$= \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{z-x} f(x, y) dy \right] dx$$

$$= \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{z-x} f_Y(y) dy \right] f_X(x) dx$$

$$= \int_{-\infty}^{+\infty} F_Y(z - x) f_X(x) dx$$

On peut trouver de la même façon : $F_Z(z) = \int_{-\infty}^{+\infty} F_X(z-y) f_Y(y) dy$ En dérivant $F_Z(z)$ par rapport à z, on trouve $f_Z(z) = \int_{-\infty}^{+\infty} f_X(z-y) f_Y(y) dy$ ou encore $f_Z(z) = \int_{-\infty}^{+\infty} f_Y(z-x) f_X(x) dx$

Somme de deux v.a. exponentielles:

Soient deux v.a. indépendantes X et Y qui suivent des lois exponentielles, $X \sim \mathcal{E}xp(\lambda_1)$ et $Y \sim \mathcal{E}xp(\lambda_2)$. On déterminera :

- **1** La fonction de répartition F(x,y) du couple (X,Y)
- 2 La densité de probabilité de la somme Z = X + Y

En effet:

Soient

$$f_X(x) = \begin{cases} \lambda_1 e^{-\lambda_1 x} & \text{si } x \ge 0 \\ 0 & \text{si } x < 0 \end{cases} \text{ et } f_Y(y) = \begin{cases} \lambda_2 e^{-\lambda_2 y} & \text{si } y \ge 0 \\ 0 & \text{si } y < 0 \end{cases}$$

On a, la fonction de répartition du couple (X, Y) est :

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv = \int_{0}^{x} \int_{0}^{y} \lambda_{1} \lambda_{2} e^{-\lambda_{1} u - \lambda_{2} v} du dv$$
$$= \left(1 - e^{-\lambda_{1} x}\right) \left(1 - e^{-\lambda_{2} y}\right)$$

Somme de deux v.a. exponentielles :

Donc la fonction de répartition du couple (X, Y) est :

$$F(x,y) = \begin{cases} (1 - e^{-\lambda_1 x}) (1 - e^{-\lambda_2 y}) & \text{si } x \ge 0 \text{ et } y \ge 0 \\ 0 & \text{sinon} \end{cases}$$

• La densité de Z = X + Y s'écrit :

$$f_Z(z) = \int_{-\infty}^{-\infty} f_X(x) f_Y(z - x) dx = \int_{\substack{x \ge 0 \ z - x \ge 0}} \lambda_1 e^{-\lambda_1 x} \lambda_2 e^{-\lambda_2 (z - x)} dx$$

Si $z \ge 0$, on a:

$$f_Z(z) = \int_0^z \lambda_1 \lambda_2 e^{-\lambda_2 z} e^{-(\lambda_1 - \lambda_2)x} dx = \frac{\lambda_1 \lambda_2}{\lambda_1 - \lambda_2} \left(e^{-\lambda_2 z} - e^{-\lambda_1 z} \right)$$

Somme de deux v.a. exponentielles :

Pour $\lambda_1 \neq \lambda_2$

$$f_Z(z) = \begin{cases} \frac{\lambda_1 \lambda_2}{\lambda_1 - \lambda_2} \left(e^{-\lambda_2 z} - e^{-\lambda_1 z} \right) & \text{si } z \ge 0\\ 0 & \text{si } z < 0 \end{cases}$$

Pour $\lambda_1 = \lambda_2$

$$f_Z(z) = \int_0^z \lambda_1^2 e^{-\lambda_1 z} dx = \lambda_1^2 z e^{-\lambda_1 z} \text{ si } z \ge 0$$

et on a donc

$$f_Z(z) = \begin{cases} \lambda_1^2 z e^{-\lambda_1 z} & \text{si } z \ge 0\\ 0 & \text{si } z < 0 \end{cases}$$

Donc, si $X \sim \mathcal{E}xp(\lambda_1)$ et $Y \sim \mathcal{E}xp(\lambda_1)$, alors $X + Y \sim \Gamma(2, \lambda_1)$.

En général, Si X_1,\cdots,X_n sont des v.a. indépendantes suivant la même loi $\mathcal{E}xp(\lambda)$, alors la v.a. $\sum_{i=1}^n X_i \sim \Gamma(n,\lambda)$.

Somme de deux v.a. normales :

Soient X_1 et X_2 deux v.a. suivant des lois normales $\mathcal{N}(m_1, \sigma_1)$ et $\mathcal{N}(m_2, \sigma_2)$ respectivement. La v.a. $X_1 + X_2$ suit, alors, aussi une loi normale $\mathcal{N}(m_1 + m_2, \sqrt{\sigma_1^2 + \sigma_2^2})$.

On montre ce résultat pour les v.a. $Y_1 = \frac{X_1 - m_1}{\sigma_1}$ et $Y_2 = \frac{X_2 - m_2}{\sigma_2}$ qui suivent toutes deux une loi normale $\mathcal{N}(0,1)$. La densité de $Z = Y_1 + Y_2$ s'écrit :

$$f(z) = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(z-x)^2}{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$
$$= \frac{1}{2\pi} e^{-\frac{z^2}{2}} \int_{-\infty}^{+\infty} e^{zx-x^2} dx = \frac{1}{2\pi} e^{-\frac{z^2}{4}} \int_{-\infty}^{+\infty} e^{-(x-\frac{z}{2})^2} dx$$

En posant $x - \frac{z}{2} = u$, on a : $f(z) = \frac{1}{2\pi} e^{-\frac{z^2}{4}} \int_{-\infty}^{+\infty} e^{-u^2} du = \frac{1}{2\pi} e^{-\frac{z^2}{4}} \sqrt{\pi}$ $= \frac{1}{\sqrt{2}\sqrt{2\pi}} e^{-\frac{1}{2}\frac{z^2}{2}}$ qui est la densité d'une v.a. suivant une loi normale $\mathcal{N}(0,\sqrt{2})$. Ce résultat peut être généralisé à la somme de plusieurs v.a. X_i ; $(i=1,2,\cdots,n)$

Propriétés de quelques lois liées à la normale Loi normale $\mathcal{N}(0,1)$:

Proposition:

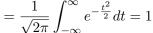
Soit Φ la fonction de répartition de X v.a. qui suit la loi normale $\mathcal{N}(0,1)$. On a : $\Phi(a)=1-\Phi(-a)$

Preuve:

Comme
$$\Phi(-a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-a} e^{-\frac{t^2}{2}} dt$$

$$= -\frac{1}{\sqrt{2\pi}} \int_{\infty}^{a} e^{-\frac{t^{2}}{2}} dt = \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} e^{-\frac{t^{2}}{2}} dt$$

et
$$\Phi(a) + \Phi(-a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-\frac{t^2}{2}} dt + \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} e^{-\frac{t^2}{2}} dt$$



Loi normale $\mathcal{N}(0,1)$:

Remarque:

On peut ramener tout calcul sur la fonction de répartition d'une v.a. normale $\mathcal{N}(m,\sigma)$ à un calcul sur la fonction de répartition $\Phi(x)$, d'une v.a. normale $\mathcal{N}(0,1)$.

En effet, si $X \sim \mathcal{N}(0,1)$, $P(X \leq a) = P(\frac{X-m}{\sigma} \leq \frac{a-m}{\sigma}) = \Phi(\frac{a-m}{\sigma})$ Tables statistiques: Tois tables relatives à la loi normale sont utilisées. La table de la densité, celle de la fonction de répartition $\Phi(x)$ et la table des fractiles. Les valeurs de $\Phi(x)$ sont tabulées (sont données sur une table statistique). C'est une table à double entrée pour laquelle on détermine la valeur de $P(Z \leq z)$ où $z \in [0; 3, 5]$ donnée. On cherche : (i) La ligne correspondante à la partie entière et au 1er chiffre décimal de z, (ii) La colonne correspondante au 2ème chiffre décimal de z, puis à l'intersection de cette ligne et de cette colonne, on lit la probabilité cherchée.

Loi de Khi-deux:

Soient n v.a. indépendantes $X_i \sim \mathcal{N}(0,1)$; $(i=1,2,\cdots,n)$. La v.a. $Y=X_1^2+X_2^2+\cdots+X_n^2$ suit une loi du Khi-deux à n degrés de liberté. On note $Y\sim\mathcal{X}_n^2$.

Pour la démonstration, on cherche d'abord la loi de X_1^2 , puis on utilise un raisonnement par récurrence.

i) Soit $X_1 \sim \mathcal{N}(0,1)$. On détermine la loi de $Z = X_1^2$. On a $F_Z(z) = P(Z \leq z) = P(X_1^2 \leq z) = P(-\sqrt{z} \leq X_1 \leq \sqrt{z}) = F_X(\sqrt{z}) - F_X(-\sqrt{z})$. La densité de probabilité de Z est :

$$f_1(z) = \frac{1}{2\sqrt{z}} (f_X(\sqrt{z}) - f_X(-\sqrt{z})) = \frac{1}{2\sqrt{z}} \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{z}{2}} + \frac{1}{\sqrt{2\pi}} e^{-\frac{z}{2}} \right)$$
$$= \frac{1}{\sqrt{2\pi}} z^{-\frac{1}{2}} e^{-\frac{z}{2}} = \frac{1}{2^{\frac{1}{2}} \Gamma(\frac{1}{2})} z^{\frac{1}{2} - 1} e^{-\frac{z}{2}}.$$

ii) Soit $X_2 \sim \mathcal{N}(0,1)$. On détermine la loi de $Z = X_1^2 + X_2^2$. Soit $f_2(z)$ la densité de Z. On a $f_2(z) = \int_0^z f_1(y) f_2(z-y) dy = \frac{e^{-\frac{z}{2}}}{2\pi} \int_0^z y^{-\frac{1}{2}} (z-y)^{-\frac{1}{2}} dy$

Loi de Khi-deux :

En posant y = tz, on obtient :

$$f_2(z) = \frac{e^{-\frac{z}{2}}}{2\pi} \int_0^1 t^{-\frac{1}{2}} (1-t)^{-\frac{1}{2}} dt = \frac{e^{-\frac{z}{2}}}{2\pi} \int_0^1 \frac{dt}{\sqrt{t(1-t)}}.$$

Avec
$$t = \cos^2 \theta$$
, il vient $f_2(z) = \frac{e^{-\frac{z}{2}}}{2\pi} \int_0^{\frac{\pi}{2}} 2d\theta = \frac{1}{2\Gamma(\frac{z}{2})} z^{\frac{2}{2}-1} e^{-\frac{z}{2}}$

iii) Soit $X_3 \sim \mathcal{N}(0,1)$. On détermine la loi $Z = X_1^2 + X_2^2 + X_3^2$. Soit $f_3(z)$ la densité de Z. On a :

$$f_3(z) = \int_0^z f_2(y) f_1(z-y) dy = \frac{e^{-\frac{z}{2}}}{2\sqrt{2\pi}} \int_0^z (z-y)^{-\frac{1}{2}} dy$$

En posant $y = tz$, on obtient:

$$f_3(z) = \frac{e^{-\frac{z}{2}}}{2\sqrt{2\pi}} \int_0^1 (1-t)^{-\frac{1}{2}} dy = \frac{e^{-\frac{z}{2}}}{\sqrt{2\pi}} z^{\frac{1}{2}} = \frac{1}{2^{\frac{3}{2}} \Gamma(\frac{3}{2})} z^{\frac{3}{2}-1} e^{-\frac{z}{2}}$$

iv) On suppose que la v.a. $U=X_1^2+X_2^2+\cdots+X_{n-1}^2$ suit une loi du \mathcal{X}_{n-1}^2 et on montre que la v.a. $Z=U+X_n^2$ suit une loi du \mathcal{X}_n^2 .

Loi de Khi-deux:

La densité de \mathcal{X}_1^2 est $f_1(y) = \frac{1}{\sqrt{2\pi}} y^{-\frac{1}{2}} e^{-\frac{y}{2}}$; celle de \mathcal{X}_{n-1}^2 est $f_{n-1}(y) = \frac{1}{2^{\frac{n-1}{2}} \Gamma(\frac{n-1}{2})} y^{\frac{n-1}{2}-1} e^{-\frac{y}{2}}$. On a alors,

$$f_n(z) = \int_0^z f_{n-1}(y) f_1(z-y) dy = \frac{e^{-\frac{z}{2}}}{2\Gamma(\frac{n-1}{2})\sqrt{2\pi}} \int_0^z (\frac{y}{2})^{\frac{n-1}{2}-1} (z-y)^{-\frac{1}{2}} dy$$

En posant y = tz, on obtient :

$$f_n(z) = \frac{e^{-\frac{z}{2}} z^{\frac{n}{2} - 1}}{2\Gamma(\frac{n-1}{2})\sqrt{2\pi} 2^{\frac{n-1}{2} - 1}} \int_0^1 t^{\frac{n-1}{2} - 1} (1 - t)^{\frac{1}{2}} dt$$

$$=\frac{e^{-\frac{z}{2}}z^{\frac{n}{2}-1}}{2\Gamma(\frac{n-1}{2})\sqrt{2\pi}2^{\frac{n-1}{2}-1}}B\left(\frac{n-1}{2},\frac{1}{2}\right)=\frac{e^{-\frac{z}{2}}z^{\frac{n}{2}-1}}{2\Gamma(\frac{n-1}{2})\sqrt{2\pi}2^{\frac{n-1}{2}-1}}\frac{\Gamma(\frac{n-1}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{n}{2})}$$

car $B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$. Sachant que $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, il vient $f_n(z) = \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}z^{\frac{n}{2}-1}e^{-z}$.

←□ → ←□ → ← □ → ← □ → □ □

Loi de Student et Loi de Fisher:

On peut montrer que :

Loi de Student:

Soient deux v.a. indépendantes X et Y telles que $X \sim \mathcal{N}(0,1)$ et $Y \sim \mathcal{X}_n^2$. La v.a. $T_n = \frac{X}{\sqrt{\frac{Y}{n}}}$ suit une loi de Student à n degrés de liberté.

On détermine d'abord la densité de $\sqrt{\frac{Y}{n}}$ puis celle $\frac{X}{\sqrt{\frac{Y}{n}}}$.

On peut montrer, aussi, que:

Loi de Fisher:

Soient deux v.a. indépendantes X et Y telles que $X \sim \mathcal{X}_p^2$ et $Y \sim \mathcal{X}_q^2$.

La v.a. $F(p,q) = \frac{\frac{X}{p}}{\frac{Y}{q}}$ suit une loi de Fisher à p et q degrés de liberté.

On détermine d'abord les densités de $\frac{X}{p}$ et de $\frac{Y}{q}$ et puis la densité de leur rapport $\frac{X}{p}/\frac{Y}{q}$.

Changement de variables :

Soient deux v.a. X et Y absolument continues. La densité de probabilité du couple (X,Y) est f(x,y). On considère la transformation U=U(X,Y) et V=V(X,Y) et la transformation inverse X=X(U,V) et Y=Y(U,V).

La fonction densité de probabilité du couple (U, V) est :

$$g(u,v) = f(x,y) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| = f\left[x(u,v), y(u,v) \right] |J|$$

où J est le déterminant de Jacobi (ou Jacobien) :

$$J = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}.$$

Application à la détermination de la loi de la somme de deux v.a. continues :

Soient X et Y deux v.a. indépendantes absolument continues. A l'aide de la formule précédente, calculons la densité de probabilité de Z=X+Y.

En effet, comme on a $f(x,y) = f_X(x)f_Y(y)$ et en considérant la transformation $\begin{cases} x = x & \text{ou } \begin{cases} x = x \\ z = x + y \end{cases}$ ou $\begin{cases} x = x \\ y = z - x \end{cases}$, on obtient :

$$g(x,z) = f(x,z-x)|J| = f_X(x)f_Y(z-x)$$
 où $J = \begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix} = 1$

La fonction h(z) densité de probabilité de Z sécrit donc :

$$h(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z - x) dx$$

- 4 □ ト 4 圖 ト 4 ≣ ト - ■ - 夕 Q (~)

Application à la détermination de la loi du produit de deux v.a. continues :

Soient X et Y deux v.a. indépendantes dont la densité de probabilité du couple (X,Y) est f(x,y). Calculons la densité de probabilité de Z=XY.

On considére la transformation $\begin{cases} x = x \\ z = xy \end{cases}$ ou $\begin{cases} x = x \\ y = \frac{z}{x} \end{cases}$. Pour $x \neq 0$, on a :

$$g(x,z)=f(x,\frac{z}{x})|J| \text{ où } J=\left|\begin{array}{cc} 1 & 0\\ -\frac{z}{x^2} & \frac{1}{x} \end{array}\right|=\frac{1}{x}$$

On donc $g(x,z)=f_X(x)f_Y(\frac{z}{x})|\frac{1}{x}|$ et la densité de probabilité de Z sécrit :

$$h(z) = \int_{-\infty}^{+\infty} g(x, z) dx = \int_{-\infty}^{+\infty} f_X(x) f_Y(\frac{z}{x}) \left| \frac{1}{x} \right| dx$$

◆ロト ◆団ト ◆恵ト ◆恵ト ・恵 ・ からぐ

Approximation d'une loi de probabilité par une autre :

Approximation de la loi hypergéométrique par la loi binomiale :

Si
$$N = a + b \to \infty$$
, $\mathcal{H}(n, a, b) \to \mathcal{B}(n, \frac{a}{N})$.

On suppose que les proportions $\frac{a}{N}$ et $\frac{b}{N}$ restent fixes. On a

$$P(X=k) = \frac{C_a^k C_b^{n-k}}{C_{a+b}^n} = \frac{C_a^k C_b^{n-k}}{C_N^n} = \frac{\frac{a!}{k!(a-k)!} \frac{b!}{(n-k)!(b-n+k)!}}{\frac{N!}{n!(N-n)!}}$$

$$= \frac{\frac{a(a-1)(a-2)\cdots(a-k+1)b(b-1)(b-2)\cdots(b-n+k+1)}{k!(n-k)!}}{\frac{N(N-1)(N-2)\cdots(N-n+1)}{n!}}$$

$$= \frac{n!a(a-1)(a-2)\cdots(a-k+1)b(b-1)(b-2)\cdots(b-n+k+1)}{k!(n-k)!N(N-1)(N-2)\cdots(N-n+1)}$$

Comme $N\to\infty, n$ et k sont fixés, a et $b\to\infty$ car $\frac{a}{N}$ et $\frac{b}{N}$ restent fixés). On obtient :

$$a(a-1)\cdots(a-k+1) = a^{k}(1-\frac{1}{a})\cdots(a-\frac{k+1}{a}) \sim a^{k}$$

Approximation de la loi hypergéométrique par la loi binomiale :

$$b(b-1)\cdots(b-n+k+1) = b^{n-k}(1-\frac{1}{b})\cdots(1-\frac{n-k-1}{b}) \sim b^{n-k}$$
$$N(N-1)\cdots(N-n+1) = N^n(1-\frac{1}{N})\cdots(1-\frac{n-1}{N}) \sim N^n$$

Si N est grand

$$\frac{C_a^k C_b^{n-k}}{C_N^n} \sim \frac{n!}{k!(n-k)!} \frac{a^k b^{n-k}}{N^n}$$

et

$$\frac{n!}{k!(n-k)!} \frac{a^k b^{n-k}}{N^k N^{n-k}} = C_n^k \left(\frac{a}{N}\right)^k \left(\frac{b}{N}\right)^{n-k}$$
$$= C_n^k \left(\frac{a}{N}\right)^k \left(1 - \frac{a}{N}\right)^{n-k}$$

En pratique, cette approximation est vraie dès que $\frac{n}{N} < 0, 1$.

Approximation de la loi binomiale par la loi de Poisson:

La loi de Poisson peut être décrite comme étant la limite de la loi binomiale $\mathcal{B}(n,p)$ lorsque $n\to\infty, p\to 0$ et $np\to\lambda$ (où λ est une constante).

En effet;

$$\lim C_n^k p^k (1-p)^{n-k} = \lim \frac{n(n-1)\cdots(n-k+1)}{k!} p^k (1-p)^{n-k}$$

$$= \lim \frac{(np)^k}{k!} (1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{k-1}{n})\frac{(1-p)^n}{(1-p)^k}$$

$$= \lim \frac{\lambda^k}{k!} (1-\frac{\lambda}{n})^n (1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{k-1}{n})(1-\frac{\lambda}{n})^{-k} = \frac{\lambda^k}{k!} e^{-\lambda}$$
car $\lim (1-\frac{\lambda}{n})^n = e^{-\lambda}$ et $\lim (1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{k-1}{n})(1-\frac{\lambda}{n})^{-k} = 1$. En pratique, cette approximation est vraie dès que $n > 50$ et $p < 0, 1$.

- 4 ロ ト 4 団 ト 4 星 ト 4 星 ト 9 Q @

Approximation de la loi binomiale par la loi normale :

Si les conditions suivantes pour n et p sont réalisées :

- n est grand $(n \ge 20)$.
- p et q ne sont pas trop petites (pratiquement $npq \geq 3$) La loi binomiale $\mathcal{B}(n,p)$ peut être approximée par une loi normale $\mathcal{N}(\mu = np, \sigma = \sqrt{npq})$

$$P(X=k) = C_n^k p^k q^{n-k} \approx \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{\sqrt{npq}} \exp\left\{-\frac{1}{2} \left(\frac{k-np}{\sqrt{npq}}\right)^2\right\}$$

• La quantité $t = \frac{k - np}{\sqrt{npq}}$ suit une loi normale centrée réduite.

Approximation de la loi de Poisson par la loi normale :

- Soit une v.a. qui suit une loi de Poisson de paramètre λ .
- Si $\lambda \geq 15$, alors cette loi de Poisson $\mathcal{P}(\lambda)$ peut être approximée par une loi normale $\mathcal{N}(\lambda, \sqrt{\lambda})$.
- Alors, la variable $T = \frac{X \lambda}{\sqrt{\lambda}}$ suit une loi normale centrée, réduite $\mathcal{N}(0,1)$.