Chapitre 1: Exercices

Prof. Mohamed El Merouani

Université Abdelmalek Essaâdi Faculté des Sciences de Tétouan Département de Mathématiques https://elmerouani.jimdofree.com/calcul-des-probabilités

2020/2021

Exercices:

Exercice 1:

Soient $(X_n)_{n\in\mathbb{N}}$ et $(Y_n)_{n\in\mathbb{N}}$ deux suites de variables aléatoires définies sur un même espace de probabilité (Ω, \mathcal{A}, P) .

- Montrer que si la suite $(X_n)_{n\in\mathbb{N}}$ converge en loi vers une variable aléatoire X, et si $(Y_n)_{n\in\mathbb{N}}$ converge en loi vers 0, le produit X_nY_n converge en loi vers 0. Donner une condition moins restrictive sur la suite $(X_n)_{n\in\mathbb{N}}$ permettant d'obtenir le même résultat.
- converge en loi vers une constante a, la suite (X_nY_n) converge en loi vers aX.
- **3** En déduire que si les suites (X_n) et (Y_n) convergent en probabilité respectivement vers X et Y, le produit (X_nY_n) converge en probabilité vers XY.

Exercices:

Exercice 2:

Soient $(X_n)_{n\in\mathbb{N}}$ et $(Y_n)_{n\in\mathbb{N}}$ deux suites de variables aléatoires réelles sur (Ω, \mathcal{A}, P) convergeant en loi respectivement vers X et Y.

- On suppose que pour tout n, X_n et Y_n sont indépendantes et que X et Y sont indépendantes. Démontrer que $X_n + Y_n$ converge en loi vers X+Y. Donner un exemple montrant que l'hypothèse d'indépendance est indispensable.
- ② On suppose que Y=0. Prouver que X_n+Y_n converge en loi vers X et X_nY_n converge en loi vers 0.

Exercice 3:

Soit une suite de couples aléatoires $(X_n, Y_n)_n$ qui converge en probabilité vers le couple aléatoire (X,Y) (c'est-à-dire que $X_n \stackrel{P}{\longrightarrow} X$ et $Y_n \xrightarrow{P} Y$). Montrer que :

- $2 X_n Y_n \xrightarrow{P} XY$

Exercices:

Exercice 4:

Soit une suite de couples aléatoires $(X_n, Y_n)_n$ telle que $X_n \xrightarrow{\mathcal{L}} X$ et $Y_n \xrightarrow{P} 0$ (La variable X étant définie sur le même espace probabilisé que les X_n). Montrer que :

- $2 X_n Y_n \xrightarrow{P} 0.$

Corrigé de l'exercice 1 :

1) • Nous savons que
$$X_n Y_n \xrightarrow{P} 0 \Leftrightarrow X_n Y_n \xrightarrow{\mathcal{L}} 0$$
 $P(|X_n Y_n| > \varepsilon) = P(|Y_n| > \frac{\varepsilon}{|X_n|})$
Soit un réel $M > 0$, on a:
$$P(|X_n Y_n| > \varepsilon) = P(\{|Y_n| > \frac{\varepsilon}{|X_n|}\} \cap \{|X_n| \leq M\}) + P(\{|Y_n| > \frac{\varepsilon}{|X_n|}\} \cap \{|X_n| > M\})$$
or $\{|Y_n| > \frac{\varepsilon}{|X_n|}\} \cap \{|X_n| \leq M\} \subset \{|Y_n| > \frac{\varepsilon}{M}\}$
donc $P(|X_n Y_n| > \varepsilon) \leq P(|Y_n| > \frac{\varepsilon}{M}) + P(|X_n| > M)$

choisissons un nombre M tel que M et -M soient des points de continuité de la fonction de répartition de X et que $P(|X|>M)<\frac{\varepsilon}{3}$;

Comme $X_n \xrightarrow{\mathcal{L}} X$, il existe $n_0 \in \mathbb{N}$, tel que $n > n_0$ implique $|P(|X_n| > M) - P(|X| > M)| < \frac{\varepsilon}{3}$

◆□ > ◆問 > ◆ = > ◆ = → の Q (

Corrigé de l'exercice 1 :

Comme $Y_n \xrightarrow{\mathcal{L}} 0$, il existe $n_1 \in \mathbb{N}$, tel que $n > n_1$ implique $P(|Y_n| > \frac{\varepsilon}{M}) < \frac{\varepsilon}{2}$ Si $n > \sup(n_0, n_1), P(|X_n Y_n| > \varepsilon) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$ Donc la suite (X_nY_n) converge en probabilité et donc en loi vers 0.

• La condition sur (X_n) qu'on avait était $X_n \xrightarrow{\mathcal{L}} X$ et que l'on a utilisé seulement pour minorer l'expression $P(|X_n| > M) < \varepsilon$; le résultat reste vrai donc sous la seule condition:

$$\forall \varepsilon \exists M \exists n_0 \text{ tels que } \Rightarrow P(|X_n| > M) < \varepsilon;$$

intuitivement, il ne faut pas qu'il y ait "fuite" de probabilité à l'infini.

Corrigé de l'exercice 1 :

- 2) Par hypothèse $Y_n a$ converge en loi vers 0; d'après 1)
- $X_n(Y_n-a)=X_nY_n-aX_n$ converge en loi vers 0.

Soit \mathcal{L} une distance de la convergence en loi; ce qui précède s'exprime

- $\mathcal{L}(X_nY_n, aX_n) \rightarrow 0$, et comme
- $\mathcal{L}(X_nY_n, aX) \leq \mathcal{L}(X_nY_n, aX_n) + \mathcal{L}(aX_n, aX)$, il résulte que
- $\mathcal{L}(X_nY_n,aX) \longrightarrow 0.$
- 3) On a $(X_nY_n XY) = (X_n X)Y_n + X(Y_n Y)$;
- comme $X_n X$ et $Y_n Y$ tendent en probabilité, donc en loi, vers 0, donc, d'après 1) on obtient que $(X_n - X)Y_n$ et $X(Y_n - Y)$ tendent en probabilité vers 0, d'où le résultat.

Corrigé de l'exercice 2 :

1) • On utilise les fonctions caractéristiques :

$$E\left(e^{it(X_n+Y_n)}\right) = E\left(e^{itX_n}\right)E\left(e^{itY_n}\right)$$
 car X et Y indépendantes
$$\underset{n\to+\infty}{\longrightarrow} E\left(e^{itX}\right)E\left(e^{itY}\right)$$

$$= E\left(e^{it(X+Y)}\right)$$
 car X et Y indépendantes.

Donc $(X_n + Y_n)_n$ converge en loi vers X + Y.

• Exemple montrant que l'hypoyhèse d'indépendance est indispensable : Soit une v.a. $X \leadsto \mathcal{N}(0,1)$ et on pose $X_n = X$ et $Y_n = -X$.

On a ainsi
$$X_n \xrightarrow{\mathcal{L}} X$$
 et $Y_n \xrightarrow{\mathcal{L}} X$ et $X_n + Y_n = 0$

Prof. Mohamed El Merouani (Univer

Corrigé de l'exercice 2 :

2)
$$\bullet \ \forall x \in \mathbb{R} \ \text{et} \ \forall \varepsilon > 0$$

$$\{X_n \le x - \varepsilon\} \cap \{|Y_n| \le \varepsilon\} \subset \{X_n + Y_n \le x\}$$

En considérant les événements contraires, on aura :

$$\{X_n + Y_n > x\} \subset \{X_n > x - \varepsilon\} \cup \{|Y_n| > \varepsilon\}$$

Si on prend les probabilités, on aura:

$$P(X_n + Y_n > x) \le P(X_n > x - \varepsilon) + P(|Y_n| > \varepsilon)$$

donc
$$P(X_n \le x - \varepsilon) \le P(X_n + Y_n \le x) + P(|Y_n| > \varepsilon)$$

d'où
$$F_{X_n}(x-\varepsilon) \le F_{X_n+Y_n}(x) + P(|Y_n| > \varepsilon)$$
 (a)

De même, on montre que
$$F_{X_n+Y_n}(x) \leq F_{X_n}(x+\varepsilon) + P(|Y_n| > \varepsilon)$$
 (b)

De (a) et (b), on obtient :

$$F_{X_n}(x-\varepsilon) - P(|Y_n| > \varepsilon) \le F_{X_n+Y_n}(x) \le F_{X_n}(x+\varepsilon) + P(|Y_n| > \varepsilon)$$

La fonction F_{X_n} étant croissante, on déduit l'encadrement :

$$|F_{X_n+Y_n}(x) - F_{X_n}(x)| \le F_{X_n}(x+\varepsilon) - F_{X_n}(x-\varepsilon) + P(|Y_n| > \varepsilon)$$

4 = 3 + 4 = 3

Corrigé de l'exercice 2 :

On considère alors x point de continuité de F_X . On peut choisir ε aussi petit que l'on veut avec de plus $x - \varepsilon$ et $x + \varepsilon$ points de continuité de F_X et $F_X(x+\varepsilon) - F_X(x-\varepsilon)$ arbitrairement petit. Pour de tels x et ε , on a: $\lim_{x \to \infty} |F_{X_n+Y_n}(x) - F_X(x)| \le F_X(x+\varepsilon) - F_X(x-\varepsilon)$

On en déduit que $F_{X_n+Y_n}(x) \to F_X(x)$

et $X_n + Y_n \xrightarrow{\mathcal{L}} X$

Corrigé de l'exercice 2 :

• On va montrer, maintenant, que le produit X_nY_n converge en probabilité vers 0.

Pour tout entier k

$$\{|X_n| < k\} \cap \{|Y_n| < \frac{1}{k^2}\} \subset \{|X_nY_n| < \frac{1}{k}\}$$
 et donc $\{|X_nY_n| \geq \frac{1}{k}\} \subset \{|X_n| \geq k\} \cup \{|Y_n| \geq \frac{1}{k^2}\}$ Il s'en suit $P(|X_nY_n| \geq \frac{1}{k}) \leq P(|X_n| \geq k) + P(|Y_n| \geq \frac{1}{k^2})$ Soit $\varepsilon > 0$. La suite $(X_n)_n$ étant convergente en loi, donc, quel que soit $n, P(|X_n| \geq k) < \varepsilon$, si k est suffisamment grand. D'autre part, la suite $(Y_n)_n$ convergente en loi vers une constante, converge en probabilité vers cette constante, donc $P(|Y_n| \geq \frac{1}{k^2}) < \varepsilon$ si n suffisamment grand. Finalement, $\forall k \in \mathbb{N}, P(|X_nY_n| \geq \frac{1}{k}) \underset{n \to +\infty}{\longrightarrow} 0$, la suite (X_nY_n) converge en probabilité, et donc en loi, vers 0 .

- 4 ロ ト 4 御 ト 4 恵 ト 4 恵 ト 9 Q G

Corrigé de l'exercice 3 :

1) Considérons l'inégalité suivante, valable pour tout $n \geq 1$ et tout $\varepsilon > 0$:

$$P(|X_n + Y_n - X - Y| > 2\varepsilon) \le P(|X_n - X| > \varepsilon) + P(|Y_n - Y| > \varepsilon)$$

Le résultat en découlent en laissant ε fixe et en faisant tendre n vers l'infini.

2) Considérons l'inégalité suivante, valable pour tout $n \geq 1$ et tout $\varepsilon > 0$:

$$P(|X_nY_n - XY| > 3\varepsilon) \le P(|X_n - X||Y| > \varepsilon) + P(|Y_n - Y||X| > \varepsilon)$$

$$(\varepsilon) + P(|X_n - X||Y_n - Y| > \varepsilon)$$

Majorons le premier terme du second membre; on a

pour tout $\varepsilon > 0$ et tout A > 0:

$$P(|X_n - X||Y| > \varepsilon) \le P(|X_n - X| > \frac{\varepsilon}{A}) + P(|Y| > A)$$

◆ロト ◆団ト ◆草ト ◆草ト 草 ぞく○

Corrigé de l'exercice 3 :

On peut choisir A assez grand pour que $P(|Y| > A) < \eta$; le nombre A étant ainsi choisi, on peut prendre n assez grand pour que

$$P(|X_n - X| > \frac{\varepsilon}{A})$$
, de sorte que $P(|X_n - X||Y| > \varepsilon) < 2\eta$.

Le deuxième terme du second membre se traite de la même façon.

Enfin, le troisième terme du second membre tend vers 0 lorsque n tend vers l'infini, puisque

$$P(|X_n - X||Y_n - Y| > \varepsilon) \le P(|X_n - X| > \sqrt{\varepsilon}) + P(|Y_n - Y| > \sqrt{\varepsilon})$$

Prof. Mohamed El Merouani (Univers

Corrigé de l'exercice 4 :

1) On a, comme vue dans un exercice avant, pour tout $\eta > 0$, l'inégalité:

$$|F_{X_n+Y_n}(x) - F_{X_n}(x)| \le F_{X_n}(x+\eta) - F_{X_n}(x-\eta) + P(|Y_n| > \eta)$$

On conclut, en prenant pour $x, x - \eta, x + \eta$ $(\eta > 0)$ des points de continuité de la fonction de répartition F de X et en laissant tendre nvers l'infini.

2) On a, pour tout A > 0 et tout $\varepsilon > 0$,

$$P(|X_nY_n| > A\varepsilon) \le P(|X_n| > A) + P(|Y_n| > \varepsilon)$$

Puisque $X_n \xrightarrow{\mathcal{L}} X$ (où X est une v.a.), le premier terme du second membre peut être rendu inférieur à η pour A, n assez grands.

Puisque $Y_n \xrightarrow{P} 0$, le second terme tend vers 0, lorsque n tend vers l'infini.

Ces deux points permettent de conclure.

