Corrigés de quelques exercices du livre « Gestion des Opérations », 1^{ère} partie « Programmation mathématique ».

Chapitre 1 : Modélisation et Résolution graphique des problèmes d'optimisation

Exercice 5, page 18:

1°) Le modèle linéaire de ce problème est :

Max 900 x1+1000x2

Sujet à 11x1+9x2≤9900

 $7x1+12x2 \le 8400$

 $6x1+16x2 \le 9600$

 $x1, x2 \ge 0$

2°) Oui, on peut appliquer la méthode graphique à ce problème car il fait intervenir deux variables de décision seulement.

Exercice 10, page 22:

4) Page 23

A

A

A

C

X

A

1

En O(0,0), on a Z=x-y=0

En A(0,2), on a Z=x-y=-2

En B(x,y)

Cherchons les coordonnées de B algébriquement,

$$(-2x + y = 2^{-1})$$
 (1)

$$\begin{cases} -\frac{1}{2}x + y = 4 \end{cases} \tag{2}$$

(2)-(1)=>
$$\frac{3}{2}x=2 \Rightarrow x=\frac{4}{3}$$

(1)=>
$$y = 2 + 2x = 2 + 2 \cdot \frac{4}{3} = 2 + \frac{8}{3} = \frac{14}{3}$$

Donc
$$Z = \frac{4}{3} - \frac{14}{3} = -\frac{10}{3}$$

En C(3, 0), on a Z=3

Le minimum est donc atteint en B $\left(\frac{4}{3}, \frac{14}{3}\right)$; la valeur minimale est Z= $-\frac{10}{3}$

Chapitre 2: Méthode du Simplexe

Exercice 1, page 40:

1°) Le problème revient à Max 5x+4y

Sujet à
$$x+2y \le 10$$

$$-x+y \le 3$$

Sur un repère orthonormé, on représente les droites :

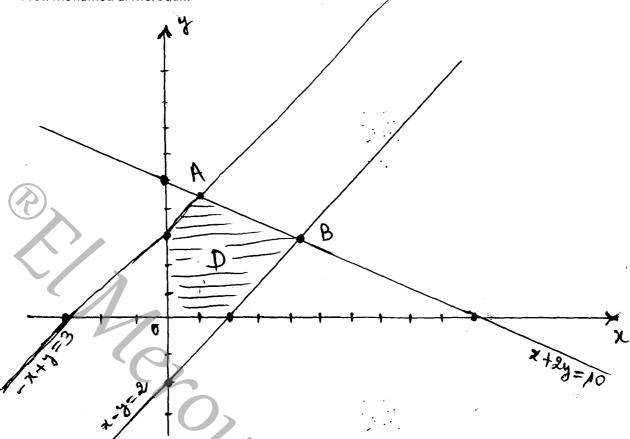
$$x+2y=10$$

$$-x+y=3$$

$$x-y=2$$

On obtient:

Prof. Mohamed El Merouani



Cherchons les coordonnées du point B

$$\begin{cases} x - y = 2 & \text{(1)} \\ x + 2y = 10 & \text{(2)} \end{cases}$$

$$(1) \Rightarrow x = 2 + y$$

(3) et (2)
$$\Rightarrow$$
 2 + 3y = 10

$$\Rightarrow y = \frac{8}{3}$$

Donc
$$x = \frac{14}{3}$$
 alors $B\left(\frac{14}{3}, \frac{8}{3}\right)$

Si on remplace ses coordonnées dans la fonction économique, on trouve $5 \cdot \frac{14}{3} + 4 \cdot \frac{8}{3} = 34$

Alors que les coordonnées de A sont $\left(\frac{4}{3}, \frac{13}{3}\right)$ et si on les remplace dans la fonction économique, on trouve : $5 \cdot \frac{4}{3} + 4 \cdot \frac{13}{3} = 24$

Conclusion:

La solution optimale est $x = \frac{14}{3}$, $y = \frac{8}{3}$.

La valeur optimale est -34 (minimisation).

2°) La forme standard est:

Min Z=-5x-4y

Sujet à
$$x+2y+u=10$$
 $x-y+p=2$
 $-x+y+h=3$
 $x, y\ge 0$
 $u, p, h\ge 0$

Le tableau initial du simplexe est :

		V. e	• •					
	V.b.	(X)	у	u	р	h	-Z	T.d.
	u	1	2	1	0	0	0	10 1
V. S.	P	D pic	at-1	0	1	0	0	2
	h	-1	1	0	0	1	0	3
	-Z	-5	-4	0	0	0	1	0
		1						

V.b.	X	(y)	u	р	h	-Z	T.d.
4. V(u)	0	3 pivo	71	-1	0	0	8
\mathbf{x}	1	$\overline{-1}$	0	1	0	0	2
h	0	0	0	1	1	0	5
-Z	0	<u>-9</u>	0	5	0	1	10
		1					

V.b.	X	y	u	p	h	-Z	T.d.
у	0	1	1/3	-1/3	0	0	8/3
x	1	0	1/3	2/3	0	0	14/3
h	0	0	0	1	1	0	5
-Z	0	0	3	2	0	1	34

Tous les coefficients de la dernière ligne de ce dernier tableau sont non-négatifs, on est à l'optimum. La valeur optimale est Z=-34.

Une solution optimale est : x=14/3, y=8/3, les autres variables sont h=5 ; u=0 ; p=0.

3°) On a : u=0 donc la 1ère contrainte est saturée.

p=0 donc la 2^{ème} contrainte est saturée

h=5 donc la 3^{ème} contrainte est non saturée.