Université Abdelmalek Essaâdi

Faculté Polydisciplinaire

DCESS en Logistique et Marketing Exercices de Statistique Appliquée

Année universitaire 2007/2008 1^{er} Semestre

Exercice 1:

La demande journalière d'un produit est une v.a. D dont la loi de probabilité est :

Valeurs de D	0	1	2	3	4
Probabilités	0,1	0,2	0,5	0,1	0,1

La vente d'une unité rapporte 100 DH.

Le coût de stockage d'une unité est 20 DH (que le produit soit vendu ou non).

Le coût moyen d'une demande insatisfaite est évalué à 40 DH.

Par exemple, si le commerçant dispose de 2 unités et que 3 clients sont acheteurs, son bénéfice est évalué à : (2x100)-(2x20)-40=120 DH.

Un commerçant a le choix entre les deux décisions suivantes :

S₁: avoir deux unités en stock,

S₂: avoir quatre unités en stock.

Son bénéfice est une v.a. X.

Quelle est la décision pour laquelle E(X) a la plus grande valeur ?

Exercice 2:

Une entreprise loue des outillages à la journée. Elle dispose de deux tronçonneuses. Il s'agit de matériels qui nécessitent un entretien attentif. Il y a, chaque jour, une probabilité de 10% qu'une tronçonneuse soit immobilisée pour réparation. La demande X_1 suit la loi de probabilité suivante :

X_1	0	1	2	3	4
$P(X_1)$	0,2	0,5	0,15	0,10	0,05

La marge brute par tronçonneuse louée est de 60 DH par jour. Soit X_2 le nombre de clients partant du magasin avec une tronçonneuse chaque jour.

- 1) Déterminer la loi de probabilité de X₂. Calculer sa moyenne et son écart-type.
- 2) Déterminer la loi de probabilité de la marge brute quotidienne. Calculer sa moyenne.
- 3) Si on achète une troisième tronçonneuse, la marge brute quotidienne unitaire diminue de 10 DH. Faut-il acheter cette troisième tronçonneuse ?

Exercice 3:

Nous admettons qu'un téléviseur peut tomber en panne de deux manière indépendantes : par défaillance de transistor ou par défaillance de condensateur.

L'exploitation de statistiques de pannes pendant les trois premières années d'utilisation a conduit à retenir :

- une loi de Poisson de paramètre λ =2, comme loi de probabilité de la v.a. X, nombre de pannes dues à une défaillance de transistor,
- une loi de Poisson de paramètre $\lambda=1$, comme loi de probabilité de la v.a. Y, nombre de pannes dues à une défaillance de condensateur.

www.elmerouani.jimdo.com

- 1. Calculer la probabilité pour qu'il ait 2 pannes seulement en 3 ans : une de transistor et une de condensateur.
 - Calculer la loi de probabilité pour qu'il ait 2 pannes seulement en 3 ans.
- 2. Calculer la probabilité du nombre total de pannes : Z=X+Y.
- 3. Déduire de ce résultat :
 - a) La probabilité d'avoir au moins 1 panne en 3 années.
 - b) La probabilité d'avoir au moins 2 pannes en 3 années.